Showing posts from March, 2017

3D Printed Food: A Taste of Science

There has always been a marriage of food and science throughout history. Before modern biotechnology was used to produce desired traits in plants and animals, farmers would raise and breed livestock that produced the most milk or best marbling. Food scientists also help determine each ingredient’s optimal condition for harvesting, preservation, and cooking.  From molecular gastronomy to chocolate printing, science has radically changed how we cook, present, and taste food.
3D printers and bioprinters are revolutionizing the food industry by unlocking unlimited potentials for taste, touch and sight.
1.Taste 3D food printers with specific focuses are already in circulation such as the successfully crowd-funded Pancakebot or Bocusini. 3D printing food does not require any sacrifices in taste. In fact with the help of several techniques from molecular gastronomy, 3D printed food has the potential to taste even better than regular foods. There was even a pop up restaurant L…

What does 3D printing bring to future kitchens?

The Technology 
Additive manufacturing has really transformed many areas of our lives today from desktop 3D printers to food printers that could produce custom designed personalized nutritional meals in every home one day. This month, our team has decided to take a closer look at the evolution of Food Printing. As far as food printers go, the use of additive manufacturing techniques spans from the basic extrusion based systems to powder and liquid binding deposition techniques. This allows the end-user to leverage the different material properties to achieve simple to complex shapes that can be created using each technique. In extrusion based food printers which may or may not involve melting, common materials that can be printed are typically soft materials like cheese, peanut butter, dough and chocolate which requires melting. One of the key challenges in this approach is the need for materials that are being printed to be viscous enough to hold its shape under …